

ATTESTATION

Je soussignée, Maud Connan-Roux, Co-gérante de la SARL CONNAN DISTRIBUTION, dont le nom commercial est COPANEL, atteste que le produit SILBONIT est vendu en France sous le nom COPANEL.

Ces plaques planes de façade, en fibre ciment, sont fabriquées en Italie, à l'usine SIL – Societa Italiana Lastre S.p.A. Le produit SILBONIT est donc rebaptisé COPANEL, le produit est parfaitement identique, et bénéficie ainsi de la FDES ci-jointe en tous points.

Fait à Sautron, le 10/02/2014

CONNAN DISTRIBUTION

La Haie Moljère - 44880 SAUTRON Tél. : 02 40 63 41 41 - Fax : 02 40 94 84 88

www.agence-connan.fr

DECLARATION ENVIRONNEMENTALE ET SANITAIRE CONFORME A LA NORME NF P 01-010

PLAQUE SILBONIT EN FIBRE CIMENT

Cette déclaration est présentée selon le modèle de Fiche de Déclaration Environnementale et Sanitaire validé par l'AIMCC (FDE&S Version 2005)

Sommaire

SON	има	NIRE	2
INT	ROD	UCTION	3
PRC	DUG	CTEUR DES DONNÉES (NF P 01-010 § 4)	4
CON	NTAC	CT :	4
GUI	DE D	DE LECTURE	4
1.	CA	RACTÉRISATION DU PRODUIT SELON NF P 01-010 § 4.3	5
1	.1	DÉFINITION DE L'UNITÉ FONCTIONNELLE (UF)	
1	.2	MASSES ET DONNÉES DE BASE POUR LE CALCUL DE L'UNITÉ FONCTIONNELLE (UF)	5
1	.3	CARACTÉRISTIQUES TECHNIQUES UTILES NON CONTENUES DANS LA DÉFINITION DE L'UNITÉ FONCTIONNELLE	5
2.		DNNÉES D'INVENTAIRE ET AUTRES DONNÉES SELON NF P 01-010 § 5 ET COMMENTAIRES RELATIFS AUX	
ENV	/IRO	NNEMENTAUX ET SANITAIRES DU PRODUITS SELON NF P 01-010 § 4.7.2	6
2	.1	CONSOMMATION DES RESSOURCES NATURELLES (NF P 01-010 § 5.1)	6
	.2	CONSOMMATION DE RESSOURCES NATURELLES NON ÉNERGÉTIQUES (NF P 01-010 § 5.1.2)	7
2	.3	CONSOMMATION D'EAU (PRÉLÈVEMENTS) (NF P 01-010 § 5.1.3)	
2	.4	CONSOMMATION D'ÉNERGIE ET DE MATIÈRE RÉCUPÉRÉES (NF P 01-010 § 5.1.4)	
7	.5	EMISSIONS DANS L'AIR, L'EAU ET LE SOL (NF P 01-010 § 5.2)	
2	2.6	PRODUCTION DE DÉCHETS (NF P 01-010 § 5.3)	
3.	IIVI	PACTS ENVIRONNEMENTAUX REPRÉSENTATIFS DES PRODUITS DE CONSTRUCTION SELON NF P 01-010	§ 618
4.		ONTRIBUTION DU PRODUIT À L'ÉVALUATION DES RISQUES SANITAIRES ET DE LA QUALITÉ DE VIE À L'IN	
DES	BÂT	TIMENTS SELON NF P 01-010 § 7	19
Δ	1.1	INFORMATIONS UTILES À L'ÉVALUATION DES RISQUES SANITAIRES (NF P 01-010 § 7.2)	19
	1.2	CONTRIBUTION DU PRODUIT À LA QUALITÉ DE VIE À L'INTÉRIEUR DES BÂTIMENTS (NF P 01-010 § 7.3)	19
5.	ΑL	ITRES CONTRIBUTIONS DU PRODUIT NOTAMMENT PAR RAPPORT À DES PRÉOCCUPATIONS D'ÉCO GES	TION DU
ΒÂΊ		NT, D'ÉCONOMIE ET DE POLITIQUE ENVIRONNEMENTALE GLOBALE	
5	5.1	ÉCO GESTION DU BÂTIMENT	20
5	5.2	ENTRETIEN ET MAINTENANCE	20
Ę	5.3	PRÉOCCUPATION ÉCONOMIQUE	20
<u> </u>	5,4	POLITIQUE ENVIRONNEMENTALE GLOBALE	21
6.	A۱	NNEXE : CARACTÉRISATION DES DONNÉES POUR LE CALCUL DE L'INVENTAIRE DE CYCLE DE VIE (ICV)	22
e	5.1.	DÉFINITION DU SYSTÈME D'ACV (ANALYSE DE CYCLE DE VIE)	22
	5.2	Sources de donne	
6	5.3	Traçabilité	

Introduction

Le cadre utilisé pour la présentation de la déclaration environnementale et sanitaire de la plaque Silbonit en fibré ciment est la Fiche de Déclaration Environnementale et Sanitaire élaborée par l'AIMCC (FDE&S version 2005). Cette fiche constitue un cadre adapté à la présentation des caractéristiques environnementales et sanitaires des produits de construction conformément aux exigences de la norme NF P 01-010 et à la fourniture de commentaires et d'informations complémentaires utiles dans le respect de l'esprit de cette norme en matière de sincérité et de transparence (NF P 01-010 § 4.2).

Un rapport d'accompagnement de la déclaration a été établi, il peut être consulté, sous accord de confidentialité, au siège de SIL.

Toute exploitation, totale ou partielle, des informations ainsi fournies devra au minimum être constamment accompagnée de la référence complète de la déclaration d'origine : «titre complet, date d'édition, adresse de l'émetteur » qui pourra remettre un exemplaire authentique.

Avertissement

SIL a demandé à LCE (Life Cycle Engineering - http://www.studiolce.it/) de l'assister dans la réalisation de la Fiche de Déclaration Environnementale et Sanitaire (FDES) pour le produit « plaque Silbonit en fibrociment ». SIL et LCE n'acceptent aucune responsabilité vis à vis de tout tiers à qui les résultats de l'étude auront été communiqués ou dans les mains desquels ils seraient parvenus, l'utilisation des résultats par leurs soins relevant de leur propre responsabilité. Nous rappelons que les résultats de l'étude sont fondés seulement sur des faits, circonstances et hypothèses qui nous ont été soumis au cours de l'étude. Si ces faits, circonstances et hypothèses diffèrent, les résultats sont susceptibles de changer. De plus, il convient de considérer les résultats de l'étude dans leur ensemble, au regard des hypothèses, et non pas pris isolément.

Producteur des données (NF P 01-010 § 4).

Les informations contenues dans cette déclaration sont fournies sous la responsabilité de SIL selon la norme NF P 01-010 § 4.6.

Contact:

Società Italiana Lastre S.p.A.

via F. Lenzi, 26 25028 Verolanuova (Bs) tel. (0039)

Guide de lecture

Les résultats sont présentés en notation scientifique avec 3 chiffres significatifs :

030.9920900

- 1,38E+03 signifie 1,38 x 103 soit 1 380
- 2,14E-02 signifie 2,14 x 10-2 soit 0,0214

Conformément à la norme NF P01-010 les cellules des tableaux comportant un zéro signifient une valeur nulle pour l'étape du cycle de vie considérée.

1. Caractérisation du produit selon NF P 01-010 § 4.3

1.1 Définition de l'Unité Fonctionnelle (UF)

L'unité fonctionnel est « Couvrir 100 mètre carré de paroi verticale pendant 1 annuité, sur la base d'une Durée de Vie Typique (DVT) de 60 ans ».

Il a été estimé qu'il n'y a pas de remplacement au cours de la vie.

1.2 Masses et données de base pour le calcul de l'unité fonctionnelle (UF)

Produit

L'épaisseur de la plaque peut varier étant donné que différents typologie de produit sont commercialisés.

Dans cette déclaration on a considéré 1 m^2 standard caractérisé per une épaisseur de 5 mm et une masse de 9 kg / m^2 .

Produit complémentaire

Pour la mis en œuvre de la plaque on a considéré l'utilisation de vis et rivets métalliques.

Emballages de distribution

Pour 1 m² standard de produit, l'emballage de distribution est représenté par :

- 114 g de palette en bois réutilisée (1 palette correspond à 24 kg)
- 11,7 g de HPDE film
- 0,639 g d'acier.

Justification des informations fournies

Les données de production sont fournies par les sites de production SIL localisée à Verolanuova (Bs).

1.3 Caractéristiques techniques utiles non contenues dans la définition de l'unité fonctionnelle

Sans objet.

2. Données d'Inventaire et autres données selon NF P 01-010 § 5 et commentaires relatifs aux effets environnementaux et sanitaires du produits selon NF P 01-010 § 4.7.2

Les données d'inventaire de cycle de vie qui sont présentées ci-après ont été calculées pour l'unité fonctionnelle définie en 1.1 et 1.2.

2.1 Consommation des ressources naturelles (NF P 01-010 § 5.1)

Consommation de ressources naturelles énergétiques et indicateurs énergétiques (NF P 01-010 § 5.1.1)

	FLUX				-:			Total cy	cle de vie
	FLUX	Unités	Production	Transport	Mise en œpvre	Vie en œuvre	Fin de vie	Par annuité	Pour toute la DVT
			Сол	sommation de re	essources naturelles	énergétiques			
	Bois	kg	3,75	2,53E-04	0	0	3,05E-05	3,75	225
	Charbon	kg	1,47	8,06E-03	2,97E-02	0	9,61E-04	1,50	90
	Lignite	kg	0	0	0	0	0	0	0
	Gaz naturel	kg	1,48	1,698-02	1,11E-03	0	1,75E-03	1,50	90,2
	Pétrole	kg	1,04	0,336	6,05E-04	0	3,80E-02	1,41	85
	Uranium (U)	kg	4,25E-05	2,48E-07	5,26E-08	0	3,13E-08	0,00	0
				Indica	teurs énergétiques				
Ener	gie Primaire Totale	MI	235	17	0,962	0	1,87	255	15.282
	Energie Renouvelable	MU	60,1	2,34E-02	0	0	2,98E-03	60	3.606
Dont	Energie Non Renouvelable	WI	175,2	16,6	0,962	0	1,86	195	11.675
	Energie procédé	MJ	177	0	0	0	0	177,2	10.634
Dont	Energie matière	MJ	58,1	0	0	0	0	58,1	3.485
	Electricité	kWh	5,53	Ó	0	0	0	5,53	332

Commentaires relatifs à la consommation de ressources naturelles énergétiques et aux indicateurs énergétiques

Consommation de ressources naturelles énergétique: Una partie de la consommation des ressources est liée a la production des vecteurs énergétiques; l'âtre partie est liée aux matériaux (exemple: bois pour le palets).

<u>Indicateurs énergétiques</u>: L'énergie matière (feedstock) est liée à la production de palettes, du film (HDPE) et de la cellulose utilisée comme matériel. Les indicateurs énergétiques doivent être utilisés avec précaution car ils additionnent des énergies d'origine différente qui n'ont pas les mêmes impacts environnementaux (se référer de préférence aux flux élémentaires).

2.2 Consommation de ressources naturelles non énergétiques (NF P 01-010 § 5.1.2)

							Total cyc	le de vie
FLUX	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Par annuité	Pour toute la DVT
Halogénés	kg	5,30E-04	2,03E-07	0	0	2,41E-08	5,30E-04	3,18E-02
Aluminium	kg	1,42E-03	1,06E-06	0	0	1,23E-07	1,42E-03	8,51E-02
Silicates d'aluminium	kg	6,53E-12	4,67E-15	0	0	5,43E-16	6,54E-12	3,92E-10
Anhydrite	kg	1,03E-06	8,14E-10	0	0	9,32E-11	1,032E-06	6,19E-05
Matières premières animales non spécifiées avant	kg	1,27E-11	0	0	0	0	1,28E-11	7,66E-10
Antimoine (Sb)	kg	1,51E-12	8,77E-15	0	0	1,10E-15	1,53E-12	9,15E-11
Arsenic (As)	kg	0	0	0	0	0	0	0
Baryum	kg	0	0	0	0	0	0	0
Bauxite	kg	1,48E-07	0	0	0	0	1,49E-07	8,91E-06
Bismuth (Bi)	kg	0	0	0	0	0	0	0
Bore (B)	kg	0	0	0	0	0	0	0
Bentonite	kg	0	0	0	0	0	0	0
Cadmium (Cd)	kg	6,87E-09	2,13E-12	0	0	2,49E-13	6,88E-09	4,13E-07
Calcium	kg	0	0	0	0	0	0	0
Sulfate de calcium	kg	2,06E-06	2,96E-09	0	0	3,82E-10	2,07E-06	1,24E-04
Produits chimiques:	kg	0	0	0	0	0	0	0
Chrome (Cr)	kg	2,21E-04	9,91E-08	0	0	1,26E-08	2,21E-04	1,33E-02
Argile	kg	2,75	2,57E-06	0	0	6,64E-07	2,75	165
Cobalt (Co)	kg	8,42E-09	8,87E-09	0	0	1,01E-09	1,83E-08	1,10E-06
Cuivre (Cu)	kg	4,94E-05	1,23E-08	0	0	1,42E-09	4,94E-05	2,96E-03
Dolomie	kg	2,37E-05	9,18E-09	7,14E-04	0	1,06E-09	7,37E-04	4,42E-02
Feldspath	kg	0	0	0	0	0	0	0
Ferromanganèse	kg	4,67E-09	0	0	0	0	4,67E-09	2,80E-07
Fluorite (CaF2)	kg	0	0	0	0	0	0	0
Gravier	kg	5,66	1,30E-05	0	0	1,54E-06	5,66	340
Or	kg	4,91E-10	5,91E-13	0	0	6,84E-14	4,91E-10	2,95E-08
Hydrogène	kg	0	0	0	0	0	0	0
Hydroxydes	kg	0	0	0	0	0	0	0
Roches ignées	kg	1,26E-05	2,56E-09	0	0	2,97E-10	1,26E-05	7,59E-04
Ilménite	kg	0	0	0	0	0	0	0
Fer (Fe)	kg	4,27E-03	6,54E-07	5,21E-02	0	8,19E-08	5,64E-02	3,38
Kaolin (Al2O3, 2SiO2,2H2O)	kg	1,10E-05	1,19E-08	0	0	1,43E-09	1,10E-05	6,63E-04
Plomb (Pb)	kg	1,01E-06	1,54E-10	0	0	1,79E-11	1,01E-06	6,05E-05
Calcaire (CaCO3)	kg	7,60E+00	1,64E-04	7,38E-04	0	2,08E-05	7,60	456

FDES SIL Rev. 1.0 – 15 Novembre 2012

							Total cy	cle de Via
FLUX	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Par annuité	Pour toute la DVT
Lithium (Li)	kg	2,75E-11	1,03E-14	0	0	2,71E-15	2,75E-11	1,64E-09
Magnésium (Mg)	kg	2,54E-03	6,678-09	0	0	1,14E-09	2,54E-03	0,153
Manganèse	kg	3,51E-05	1,286-09	0	0	1,54E-10	3,51E-05	2,10E-03
Mercure (Hg)	kg	2,09E-11	0	0	0	0	2,09E-11	1,25E-09
Molybděne (Mo)	kg	2,40E-06	1,62E-08	0	0	1,81E-09	2,42E-06	1,45E-04
Nickel (NI)	kg	3,56E-04	1,78E-07	0	0	2,23E-08	3,56E-04	0,0214
Autres (non précisés)	kg	0,414	4,34E-06	0	o	5, 15E-07	0,41	24,9
Autres métaux	kg	2,53E-04	1,01E-07	0	0	1,37E-08	2,54E-04	1,52E-02
Palladium (Pd)	kg	7,02E-15	0	0	0	0	7,02E-15	4,21E-13
Platine (Pt)	kg	8,43E-14	0	0	0	0	8,43E-14	5,06E-12
Peroxydes	kg	0	a ·	O	0	0	0	0
Phosphorons	kg	2,12E-03	8,11E-07	0	٥	9,62E-08	2,12E-03	0,127
Potassium	kg	0	0	0	0	0	0	0
Chlorure de potassium	kg	0,117	3,85£-08	0	0	4,358-09	0,117	7,05
Pouzzolane	kg	0	0	0	0	0	0	0
Pyrite	kg	0	0	0	0	a	0	0
Rutlle (TiO2)	kg	2,47E-06	0	0	0 1	0	2,5E-06	1,48E-04
Rhodium	kg	0	O	0	0	. 0	0	0
Sable	kg	6,12E-05	1,395-08	0	0	1,59E-09	6,1194E-05	3,67E-03
Séfénium	kg	0	0	0	0	0	0	0
Schiste argileux	kg	2,92E-06	2,30E-09	0	0	2,64E-10	2,98-06	1,75E-04
Silicates	kg	1,59E-06	1,085-09	0	0	1,33E-10	1,66-06	9,58E-05
Argent (Ag)	kg	1,33E-09	1,598-12	0	0	1,84E-13	1,3E-09	7,97E-08
Ardoise	kg	5,99€∙17	0	0	0	0	6,0E-17	3,60E-15
Carbonate de sodium	kg	0	0	o	0	0	0	0
Chlorure de sodium	kg	0,107	6,98E-05	0	0	8,916-06	0,107	6,43
Sodium	kg	2,96E-03	1,18E-06	0	٥	1,40E-07	2,96E-03	0,178
Nitrate de sodium	kg	2,16E-11	8,20E-15	0	0	9,41E- 1 6	2,16E-11	1,298-09
Sulfate de baryum	kg	0,00025327	1,09E-07	0	0	1,3SE-08	2,53Ë-04	0,0152
Sulfate de sodium	kg	0	0	0	0	0	0	0
Soufre (S)	kg	9,39E-05	2,80E-08	0	ם	3,21E-09	9,39E-05	5,63E-03
Talc	kg	1,35E-06	1,38E-09	0	0	1,71E-10	1,35E-06	8,106E-05
Etain (Sn)	kg	3,778-06	2,71E-11	0	0	3,15E-12	3,77E-06	2,26E-04
Titane (Tí)	kg	1,49E-06	0	0	0	0	1,49E-06	8,932E-05
Oxyde de titane	kg	6,03E-03	2,44E-06	0	0	2,93E-07	6,03E-03	0,362
Tungstène (W)	kg	0	0	0	0	0	0	0
Bois et biomasse	kg	3,75	2,53E-04	0	0	3,056-05	3,75	225,2
Vanadium (V)	kg	0	Ó	0	0	0	0	0
Zirconium (Zr)	kg	6,54E-10	7,88E-13	0	0	9,12E-14	6,55E-10	3,93E-08
Zinc (Zn)	kg	5,92E-06	2,41E-08	0	0	2,75E-09	5,94E-06	3,57E-04

Commentaires relatifs à la consommation de ressources naturelles non énergétiques :

Les principales ressources non énergétiques consommées sont l'argile, le gravier et le calcaire, liés surtout à la production du céments.

2.3 Consommation d'eau (prélèvements) (NF P 01-010 § 5.1.3)

						Fin de vie	Total cy	cle de vie
FLUX	Unités	Production	Transport	Mise en œuvre	Vie en œuvre		Par annuité	Pour toute la DVT
Eau : Lac	litre	1,227	1,22E-03	0	0	1,40E-04	1,23	73,7
Eau : Mer	litre	4,57	8,09E-02	0	0	1,05E-02	4,66	279
Eau : Nappe Phréatique	litre	22,2	2,42E-02	0	0	3,76E-03	22,31	1339
Eau : Origine non Spécifiée	litre	58,7	0,918	0,472	0	0,102	60	3.609
Eau: Rivière	litre	25,8	0,326	0	0	3,85E-02	26,2	1.574
Eau Potable (réseau)	litre	0	0	0	0	0	o	0
Eau Consommée (total)	litre	112	1,35	0,472	0	0,155	115	6.875

Commentaires relatifs à la consommation d'eau (prélèvements):

La consommation d'eau est surtout liée à la phase production. En particulier la consommation est liée à la production des matériaux comme le ciment et la cellulose.

2.4 Consommation d'énergie et de matière récupérées (NF P 01-010 § 5.1.4)

La consommation d'énergie récupéré est nulle. La consommation directe de matière récupérées per SIL est nulle et la consommation indirecte est négligeable.

2.5 Emissions dans l'air, l'eau et le sol (NF P 01-010 § 5.2)

Emissions dans l'air (NF P 01-010 § 5.2.1)

							Total cy	cle de vie
A{R EMISSIÓN	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Par annuité	Pour toute la DVT
Hydrocarbures (non spécifiés, excepté méthane)	g	1,22	9,18E-02	0	Ú	1,03E-02	1,32	79,4
HAPa (non spéciflés)	R	0,0230	2,00E-03	o	0	2,555-04	2,53E-02	1,52
Méthane (CH4)	e	21,0	1,17	0,214	0	0,115	22,5	1.352
Composés organiques volatiis (par exemple, acétone, acétate, etc.)	g	. 2,22E-03	0	0	O	0	2,22 E- 03	0,133
Non-méthane composés organiques volatils	g	4,31	0,747	1,17E-02	0	0,117	5,19	311
Dioxyde de Carbone (CO2)0 non spécifiés et fossiles	E	13.398	1.113	81	0	124	14.716	882.957
Dłoxyde de Carbone (CO2)Obiogenic	e e	519	0,454	0	0	5,43E-02	519,87	31.192
Dioxyde de Carbone (CO2)Oland transformation	E	132	1,556-03	D	O	1,82E-04	131,9	7.91 3
Monoxyde de Carbone (CO)	e	8,07	1,80	1,00	ú	0,262	11,1	668
Oxydes d'Azote (NOx en NO2)	g	29,7	9,10	9,36E-02	0	1,15	40,02	2.401
Protoxyde d'Azoto (N2O)	g	0,34	0,03	3,35E-04	o	4,48E-03	0,382	22,9
Ammoniaque (NH3)	В	0,38	0,01	0	0	8,518-04	0,391	23,47
Poussières (non spécifiées)	g	6,08	0,389	4,16E-02	o	7,388-02	6,59	395,36
Oxydes de Soufre (SOx en SO2)	g	26,1	0,922	1,02E-01	0	0,126	27,3	1.637,77
Hydrogène Sulfureux (H2S)	g	0,0497	4,09E-05	2,106-03	0	5,29E-06	5,18E- 0 2	3,11
Acide Cyanhydrique (HCN)	g	1,568-07	0	0	n	0	1,5 6 E-07	9,37E-06
Composés chlorés organiques (en Cl)	g	1,04E-02	1,76E-06	0	0	2,02E-07	1,04E-02	0,626
Acide Chlorhydrique (HCl)	g	0,183	1,51E-03	1,59E-03	0	1,81E-04	0,19	11,19

FDES SIL Rev. 1.0 – 15 Novembre 2012

							Total cy	de de vie
AIR EMISSION	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Par annuité	Pour toute la DVf
Composés chlorés Inorganiques (en Ci)	g	9,31E-03	4,75E- 05	0	0	5,60E-06	9,366-03	0,562
Composés chlorés non spécifiés (en Cl)	8	a	٥	o	0	0	0	a
Composés fluorés organiques (en F)	g	1,68E-03	2,38E-03	0	0	2,40E-04	4,29E-03	0,26
Composés fluorés Inorganiques (en F)	g	6,415-04	1,91€ 06	0	0	2,34E-07	6,43E-04	0,04
Composés halogénés (non spécifiés)	В	4,21E-03	3,77E-05	0	0	4,32E-06	4,25E-03	0,25
Composés fluorés non spécifiés (en F)	g	0	0	0	0	0	o	0
Métaux (non spéciflés)	g	2,47E-02	1,79E-04	0	0	2,16E-05	2,49E-02	1,50
Aluminium et ses composés (en Al)	g	2,04E-01	4,10E-04	0	0	5,048-05	0,205	12,27
Antimoine et ses composés (en Sb)	6	8,46E-05	1,07E-07	0	0	1,29E-08	8,47E-05	5,08E-03
Arsenic et ses composés (en As)	g	4,95E-04	6,89E-06	0	0	8,23E-07	5,03E-04	3,02E-02
Cadmium et ses composés (en Cd)	6	1,87E-04	1,43E-05	2,59E-06	0	1,686-06	2,05E-04	1,23E-02
Chrome et ses composés (en Cr)	g	9,726-04	4,56E-05	6,03E-06	0	4,88E-06	1,03E-03	6,17E-02
Cobalt et ses composés (en Co)	8	4,78E-04	1,09E-05	0	0	1,33E-06	4,90E-04	2,94E-02
Culvre et ses composés (en Cu)	g	3,77E-03	2,25E-03	0	0	2,32E-04	6,25E-03	0,375
Etain et ses composés (en Sn)	g	7,13E-05	5,65€-08	0	0	7,04E-09	7, 1 3E-05	4,28 E -03
Fer et ses composés (en Fe)	£	3,99E-02	2,82E-04	0	0	3,518-05	4,02E-02	2,41
Manganèse et ses composés (en Mn)	g	1,58£-03	6,08E-06	0	0	7,586-07	1,59E-03	9,52E-02
Mercure et ses composés (en Hg)	g	3,37E-04	4,93E-06	3,19E-06	o	5,28E-07	3,45E-04	2,07E-02
Nickel et ses composés (en NI)	g	6,72E-03	2,13E-04	0	0	2,47E-05	6,96E-03	0,417
Plamb et ses composés (en Pb)	ę _	1,72E-03	1,376-04	1,28E·04	a	1,416-05	2,00E-03	1,20E-01
Potassium et ses composés (en Pb)	g	8,75E-02	1,14E-04	0	0	1,40E-05	8,76E-02	5,26
Rhodium et ses composés (en Rh)	E	1,82E-15	0	0	0	0	1,82ε-15	1,09E-13
Scandium et ses composés (en Sc)	g	1,24E-04	7,38É-07	o	0	9,30E-08	1,25E-04	7,49E-03

FDES SIL Rev. 1.0 – 15 Novembre 2012

						_,	Total cy	cle de vie
AIR EMISSION	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fín de vie	Par annuité	Pour toute la DVT
Sélénium et ses composés (en Sc)	e	2,978-04	9,49E-06	o	0	1 ,1 0 E-06	3,08E-04	1,85€-02
Silicium et ses composés (en Si)	g	4,66 E-0 2	5, 29E-05	0	0	6,63E-06	4,67E-02	2,80
Sodium et ses composés (en Na)	g	1,22E-02	2,7 7E- 04	0	0	3,276-05	1,26E-02	0,753
Strontium et ses composés	6	5,10E-04	2,64E-06	0	0	3,21E-07	5,13E-04	0,03
Tallium et ses composés	e	8,04E-05	5,48E-1.0	۵	0	2,05E-10	8,04E-05	4,82E-03
Tellure et ses composés (en Te)	g	1,90E-10	0	0	0	0	1,90E-10	1,14E-08
Zinc et ses composés (en Zn)	8	4,19E-03	9,64E- 04	0	0	1,016-04	5,25E-03	0,315
Uranium et ses composés (en U)	в	7,52E-07	7,37£-10	0	O	9,54E-11	7,53E-07	4,52E-05
Vanadium et ses composés (en V)	g	1,43E-02	2,976-04	0	0	3,498-05	1,475-02	0,879
Eau	g	942	3,11E-04	0	0	3,73E-05	942	5,6E+04
Composés inorganiques (non spécifiés)	g	0,560	4,92E-04	0	o	5, 9 6E-05	0,560	33,6
Composés organiques (non spécifiés)	g	8,51E-02	3,54E-03	4,598-11	o	3,815-04	8,90E-02	5,34
Alcools	g	7,90E-02	1,04E-04	0	0	1,19E-05	7,86E-02	4,72
Etc.	g	0,378	2,046-03	0	o	2,01E-04	0,381	22,8

Commentaires relatifs aux émissions dans l'air :

Les émissions qui contribuent le plus à la pollution de l'air sont les émissions de dioxyde de carbone, méthane, composés organiques volatils, monoxyde de carbone, oxydes d'azote , oxydes de soufre.

Emissions dans l'eau (NF P 01-010 § 5.2.2)

							Total cy	:le de vie
WATER EMISSION	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Par annulté	Pour toute la DVT
Sulfate	g	179	1,11	0	0	0,132	180	10784
DCO (Demande Chimique en Oxygène)	g	36,8	3,12	0,02	0	0,404	40,3	2419
HAP (non spécifiés)	e	5,58E-03	2,00E-03	0	0	2,37E-04	7,82E-03	0,469
Ammoniaque (NH3)	g	4,08E-02	1,50E-03	1,17E-04	0	1,73E-04	4,25E-02	2,55
DBO5 (Demande Biochimique en Oxygène à 5 jours)	g	14,5	3,10	2,208-05	0	0,40	18,0	1079
Matlère en Suspension (MES)	g	1,70	1,95E-02	o .	0	2,29E-03	1,72	103
Cyanure (CN-)	g	1,02E-02	3,78E-05	0	0	4,36E-06	1,02E-02	0,614
AOX (Halogènes des composés organiques adsorbables)	g	6 ,4 9E -04	1,23E-05	0	0	1,54£-06	6,63E-04	3,98E-02
Hydrocarbures (non spécifiés)	g	0,18	1,45E-02	0	0	1,70E-03	0,194	11,7
Composés azotés (en N)	8	0,70	2,03E-03	2,04E-03	0	2,45E-04	0,704	42,2
Composés phosphorés (en P)	g g	5,34	4,30E-02	2,906-05	0	5,246-03	5,38	323
Composés fluorés organiques (en F)	g	7,85E-09	0	0	0	0	7,85E-09	4,715-07
Composés fluorés inorganiques (en F)	g	0,227	1,73E-03	0	0	2,05E-04	0,229	13,8
Composés fluorés non spécifiés (en F)	g	0	0	0	0	0	0	0
Composés chlorés organiques (en Cl)	g	4,17E-03	5,40E-08	0	0	6,56E-09	4,17E-03	0,250
Composés chlorés Inorganiques (en Cl)	g	227	9,54	0	0	1,12	239	14.317
Composés chlorés non spécifiés (en Cl)	g	2,47E-04	4,9 5 E-08	0	0	5,80E-09	2,4 7 E-04	0,01
Chrome hexavalente	e	1,58€ 02	9,61E-05	0	0	1,21E-05	1,59E-02	0,954
Métaux (non spécifiés)	g	57,9	1,09	0	0	0,129	59,1	3548
Aluminium et ses composés (en Al)	g	3,13	2,38E-02	0	0	2,85E-03	3,16	190
Antimoine et ses composés (en Sb)	g	5,09E-03	1,04E-05	0	0	1,23E-06	5,11E-03	0,306
Arsenic et ses composés (en As)	g	9,01F-03	6,76-05	0	0	8,31E-06	9,09E-03	0,545
Cadmium et ses composés (en Cd)	8	1,50E-03	1,35E-05	1,22E-06	0	1,54E-06	1,52E-03	9,116-02
Chrome et ses composés (en Cr)	g	1,02£-03	5,996-05	2,27E-06	0	6,59E-06	1,09E 03	6,54E-02
Cobalt et ses composés (en	g	3,44E-02	2,61E-04	0	0	3,12E-05	3,47E-02	2,08

FDES SIL Rev. 1.0 – 15 Novembre 2012

							Total cyc	ile de vie
WATER EMISSION	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vic	Par annuité	Pour toute la DVT
Cuivre et ses composés (en Cu)	g	0,153	3,80E-04	0	0	4,146-05	0,15	9,19
Etain et ses composés (en Sn)	Æ	3,098-09	₫ €÷0 0	0	0	0	3,09E-09 	1,85E-07
Manganèse et ses composés (en Mn)	8	1,38	1,07E-02	0	0	1,27E-03	1,40	83,77
Mercure et ses composés (en Hg)	E	4,89E-04	3,70E-06	0	0	4,42E-0 7	4,93E-04	2,96E-02
Nickel et ses composés (en Ni)	g	0,155	1,19E-03	2,96E-06	0	1,42E-04	0,156	9,36
Plomb et ses composés (en Pb)	g	1,37E-02	2,216-04	8,70E-07	0	2,35E-05 	1,39E-02	0,835
Potassium et ses composés (en Pb)	g	13,7	0,152	0	0	1,806-02	13,8	831
Rhodium	E	0	0	0	0	0	0	0
Scandlum et ses composés	£	4,13E-03	3,115-05	0	0	3,75E-06	4,17E-03	0,250
Sélénium et ses composés (en Se)	Ŕ	5, 3 7E-03	4,38E-05	0	0	5,2 2 E-06	5,42E-03	0,325
Silicium et ses compasés (en Si)	g	23,9	0,197	9	0	2,36E-02	24,1	1.446
Fer et ses composés (en Fe)	В	6,16	3,84E-02	5,77E-04	0	4,58E-03	6,20	372
Sodium et ses composés (en Na)	В	136,6	5,86	0	0	0,69	143	8,590
Soufre et ses composés (5)	6	0,784	2,24E-03	0	0	2,91E-04	0,787	47,22
Strontium et ses composés	g	0,64	3,86E-02	0	0	4,53E- 03	0,682	40,90
Tallium et ses composés	g	2,126-04	1,20E-06	0	0	1,89E-07	2,13E-04	0,01
Tellure et ses composés (ел Те)	g	0	0	0	0	0	υ	0
Zinc et ses composés (en Zn)	g	0,193	8,80E-03	7,49€-05	0	8,42E-04	0,202	12,14
Uranium et ses composés (en U)	ę	a	o	0	0	0	. 0	0
Vanadium et ses composés (en V)	ę	1,80E-02	1,03E-04	0	0	1,245-05	1,81E-02	1,09
Eau rejetée	E	ů _	0	0	0	0	0	0,00
Composés inorganiques (non spécifiés)	ε	5,35	0,04	0 .	0	4,30E-03	5,39	323,28
Composés organiques (non spécifiés)	g	0,32	0,08	0	0	9,55E·03	0,408	24,50
Alcools	е	0,02	1,74E-03	0	0	2,07E-04	1,77E-02	1,06
Etc.		3,20	0,979	6,278-05	0	0,126	4,31	258,62

Commentaires sur les émissions dans l'eau: Les émissions qui contribuent le plus à la pollution de l'eau sont les émissions de sulfate, demande chimique en oxygène, demande biochimique en oxygène à 5 jours, composés chlorés inorganiques, métaux.

Emissions dans le sol (NF P 01-010 § 5.2.3)

SOIL EMISSION	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cy	cle de víe
							Par annuité	Pour toute la DVT
Arsenic et ses composés (en As)	6	3,07E-06	3,05E-09	0	0	3,675-10	3,07E-06	1,84E-04
Blocides	g	1,50E-04	6,38E-08	O	0	7,34E-09	1,50E-04	8,97E-03
Ammoniac	g	1,40E-03	0,00E+00	0	0	0,00E+00	1,40E-03	8,39E-02
Aluminium et ses composés (en Al)	g	9,36E-03	1,39E-05	o	0	1,646-06	9,37E-03	0,562
Baryum et ses composés (en Ba)	£	5,27 E -05	2,90E-07	0	0	3,286-08	5,30E-05	3,186-03
Boron et ses composés (en Bo)	8	2,11€ -06	7,43E-08	0	0	8,35E-09	2,19E-06	1,32E-04
Cadmium et ses composés (en Cd)	g	7,54E-06	2,19E-06	0	o	1,88E-07	9,92E-06	5,956-04
Calcium et ses composés (en Ca)	g	0,123	0	0	0	1,91E-05	0,123	7,38
Chrome et ses composés (en Cr)	g	9,83E-05	1,05E-05	0	0	9,05E-07	1,10E-04	6,59£-03
Carbon	g	1,04E-02	8,41E-05	0	0	9,54E-06	1,05E-02	0,63
Culvre et ses composés(en Cu)	g	3,74E-04	1,46E-04	0	D	1,25E 05	5,33E-04	3,206-02
Cobalt et ses composés (en Co)	g	7,93E-06	8,19E·09	0	D	9,88€-10	7,945-06	4,76E-04
Etain et ses composés (en Sn)	g	1,08E-06	5,24E-10	0	0	6,47€-11	1,08E-06	6,49E-05
Fer et ses composés (en Fe)	. g	8,80E-02	4,74E-03	0	D	4 ,12 E-04	9,31E-02	5,59
Plomb et ses composés (en Pb)	8	8,32E-05	8,99E-05	0	0	7,688-06	1,81E-04	1,08E-02
Magnésium et ses composés (en Mg)	£	1,39E-02	1,64E-05	0	0	1,978-06	1,39€-02	0,835
Manganèse et ses composés (en Mn)	8	8,54E-03	9,43E-06	0	0	1,13E-06	8,55E-03	0,513
Mercure et ses composés (en Hg)	ß	9,56E-08	8,32E-11	0	0	1,01E-11	9,575-08	5,74E-06
Molibdenum et ses composés (en Mo)	В	1,70E-06	1,77E-09	0	0	2,13E-10	1,705-06	1,02E-04
Nickel et ses composés (en Ni)	g	4,18E-05	2,83E-05	0	0	2,42E-06	7,25E-05	4,35E-03
Zinc et ses composés (en Zn)	g	4,33E-03	6,17E-03	0	0	5,27E-04	1,106-02	0,66
Métaux lourds (non spécifiés)	g	0	0	0	0	0	a	0
FO FO	g	3,00	0,992	0	0	0,130	4,12	247
Phosphoreuse et ses composés (en P)	g	4,18 E-03	4,35E-06	0	0	5,24E-07	4,198-03	0,251
Potassium et ses composés (en K)	g	2,36E-02	2,42E-05	0	o	2,92E-06	2,36£-02	1,42

FDES SIL Rev. 1.0 – 15 Novembre 2012

SOIL EMISSION	Unītés	ités Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	₹otal cycle de vie	
							Par annuité	Pour toute la DVT
Silicona et ses composés (en Si)	В	3,60E-02	3,74E-05	0	0	4,51E-06	3,60€-02	2,16
Sodium et ses composés (en Na)	g	1,94€-04	1,19E-07	0	0	1,40E-08	1,94E-04	1,176-02
Strontium et ses composés (en Sr)	g	8,86E-04	9,6 4E -07	0	0	1,088-07	8,87E-04	5,32E-02
Chloride	g	3,46E-03	2,71E-06	0	0	3,22E-07	3,46E-03	0,208
Fluoride	g	2,05E-05	4,24E-09	. 0	0	4, 9 8 E-1 0	2,05E-05	1,23E-03
Etc.	g	5,028-03	4,526-06	0	0	5,46E-07	5 ,02E-03	0,301

<u>Commentaires sur les émissions dans le sol</u>: Comparativement aux émissions dans l'eau, les émissions dans le sol sont relativement faibles et contribuent peu à la pollution.

2.6 Production de déchets (NF P 01-010 § 5.3)

Déchets valorisés (NF P 01-010 § 5.3)

FLUX	Unités	Production	Transport	Mise en oeuvre	Vie en oeuvre	Fin de vie	Total cycle de vie	
							Par annuité	Pour toute la EVT
Energie Récupérée	M)	0	0	0	0	0	0	0
Matlère Récupérée : Total	kģ	0	0	0	0	0	0	0
Matière Récupérée : Acier	kg	1,925-02	D	0	o	0	1,92E-02	1,153
Matière Récupérée : Aluminium	kg	0	0	0	Û	o o	o	0
Matière Récupérée : Métal (non spécifié)	kg	0	0	1,07E-03	0	0	1,07E-03	6,41E-02
Matière Récupérée ; Papier- Carton	kg	0	0	0	0	0	0	0
Matière Récupérée : Plastique	kg	0	0	1,966-02	0	0	1,96E-02	1,175
Matière Récupérée : Calcin	kg	0 .	o	0	0	0	Ó	o
Matière Récupérée : Biomasse	kg	9,33E-02	Ô	0,191	o	0	0,284	17,1
Matière Récupérée : Minérale	kg	7,71	0	0	0	O	7,71	463
Matière Récupérée : Huile	kg	1,05E-03	0	o	0	0	1,05E-03	0,0632
Etc.	***	0	0	0	0	0	0	o

Commentaires relatifs à la production et aux modalités de gestion des déchets valorisés :

La production des déchets valorisés est liée, pour la phase de production à le recyclage du acier, bois, déchets en cément et huiles. Pour la phase de mise en œuvre les déchets sont lié au packaging (fer, HDPE et bois).

Déchets éliminés (NF P 01-010 § 5.3)

FLUX	Unités	Production	Transport	Mise en oeuvre	Vie en deuvre	Fin de vie	Total cycle de vie	
							Par annuité	Pour toute la DVT
Déchets dangereux	kg	0	0	0	0	0	0,00	0
Déchets non dangereux	kg	0	0	o	0	15,0	15,0	900
Déchets inertes	kg	0	0	0	0	0	0,00	0
Déchets radioactifs	kg	0	0	٥	0	0	0	0
Etc.	kg	0	0	0	0	0	0	0

Commentaires relatifs à la production et aux modalités de gestion des déchets éliminés:

Les déchet éliminés sont spécifiques du plante SIL. Les déchets lié à la production des matière (cément, cellulose, etc.) ne sont pas considérés. La masse de 15,0 kg (phase de fin de vie) représente la plaque qui viens d'être mise en décharge.

3. Impacts environnementaux représentatifs des produits de construction selon NF P 01-010 § 6

Tous ces impacts sont renseignés ou calculés conformément aux indications du § 6.1 de la norme NF P01-010, à partir des données du § 2 et pour l'unité fonctionnelle de référence par annuité définie au § 1.1 et 1.2 de la présente déclaration, ainsi que pour l'unité fonctionnelle rapportée à toute la DVT (Durée de Vie Typique).

N°	Impact environnemental	Valeur de l'il	ndicateur pour l'unité fonctionnelle	Valeur de l'Indicateur pour toute la DVT		
	Consommation de ressources énergétiques					
1	Energie primaire totale	255	MJ/UF	15.281	MU	
	Energie renouvelable	60	MJ/DF	3.606	MJ	
-	Energie non renouvelable	195	MJ/UF	11.674	M)	
2	Epulsement de ressources (ADP)	8,51E-02	kg équivalent antimoine (Sb)/UF	5,11	kg équivalent antimoine (Sb)	
3	Consommation d'eau totale	114	litres/UF	6.875	litres	
	Déchets solides				<u></u>	
	Déchets valorisés (total)	8,63	kg/UF	518	kg	
上	Déchets éllminés :					
4	Déchets dangereux	0	kg/UF	0	kg	
	Déchets non dangereux	15	kg/UF	900	kg	
┢	Déchets inertes	0	kg/UF	0	kg	
	Déchets radioactifs	0	kg/UF	0	kg	
5	Changement climatique	15,52	kg équivalent CO2/UF	931	kg équivalent CO2	
6	Acidification atmosphérique	5,646-02	kg équivalent SO2/UF	3,38	kg équivalent SO2	
,	Pollution de l'air	1.079	m³/UF	64,755	m³	
8 -	Pollution de l'eau	6,21	m³/UF	372	m³	
9	Destruction de la couche d'ozone stratosphérique	1,45E-06	CFC équivalent R11/UF	8,69E-05	CFC équivalent R11	
10	Formation d'ozone photochimique	2,11E-03	kg équivalent éthyléne/UF	1,27E-01	kg équivalent éthylène	

4. Contribution du produit à l'évaluation des risques sanitaires et de la qualité de vie à l'intérieur des bâtiments selon NF P 01-010 § 7

Contribution du produit		Paragraphe concerné
A l'évaluation des risques sanitaires	Qualité sanitaire des espaces intérieurs	§ 4.1
	Qualité sanitaire de l'eau	5 4.1
	Confort hygrothermique	§ 4.2
A la qualité de la vie	Confort acoustique	§ 4.2
	Confort visuel	§ 4.2
	Confort olfactif	§ 4.2

4.1 Informations utiles à l'évaluation des risques sanitaires (NF P 01-010 § 7.2) Contribution à la qualité sanitaire des espaces intérieurs (NF P 01-010 § 7.2.1)

Utilisé en intérieur, le produit résiste à l'humidité et aux moisissures, aux insectes. En exploitation normale, conforme à l'usage prévu pour le produit, on ne connaît aucun risque pour la santé dû aux matières premières utilisées et à leurs comportements, après mise en œuvre. Le produit résiste aux UV et à la plupart des agents chimiques qui on peut trouver dans les produit utilisés pour le nettoyage de la plaque.

Contribution à la qualité sanitaire de l'eau (NF P 01-010 § 7.2.2)

La plaque Silbonit n'est pas en contact avec l'eau potable consommée dans le bâtiment, par conséquent elle ne contribue pas à la qualité sanitaire de l'eau.

4.2 Contribution du produit à la qualité de vie à l'intérieur des bâtiments (NF P 01-010 § 7.3)

Caractéristiques du produit participant à la création des conditions de confort hygrothermique dans le bâtiment (NF P 01-010 § 7.3.1)

La performance hygrothermique du produit est optimisée pour assurer une parfaite étanchéité, les capacités anti-incendie ne contribue pas a la charge calorifique ni a la propagation de l'incendie. Le produit est classe A2-s1,d0.

Caractéristiques physiques pour la construction:

Les information qui concernent les caractéristiques techniques du produit sont disponibles dans la fiche techniques du produit.

5. Autres contributions du produit notamment par rapport à des préoccupations d'éco gestion du bâtiment, d'économie et de politique environnementale globale

5.1 Éco gestion du bâtiment

Gestion de l'énergie

La plaque Silbonit n'a pas pour vocation d'isoler thermiquement le bâtiment. Toutefois, elle participe à la gestion de l'énergie à travers ses caractéristiques thermiques ce qui permet de mieux contrôler la consommation énergétique non seulement dans le cas du chauffage mais aussi dans le cas de la climatisation.

Gestion de l'eau

Sans objet.

5.2 Entretien et maintenance

La plaque Silbonit ne demande pas d'entretien particulier. La produit SIL est résistant à l'effritement, résistant aux intempéries et aux UV, résistant aux attaques par les champignons et par les termites. En cas de dégradation de la plaque, celle-ci peut être démontée et facilement remplacée.

5.3 Préoccupation économique

En effet le bardage ventilé offre une protection au bâti et une amélioration de l'isolation (notamment par l'extérieur). Il représente un investissement, modéré, que l'on valorise rapidement par des économies au niveau de la vie en œuvre du bâtiment:

5.4 Politique environnementale globale

SIL est engagée dans une démarche globale d'amélioration de ses performances environnementales.

Ressources naturelles

La plaque Silbonit est essentiellement composé de matières de base minérales pour lesquelles, dans l'état actuel des connaissances, il n'y a pas de pénurie de ressources. La plupart de ces matières est commercialisé par le pays fabricant.

Emissions dans l'air et dans l'eau

Mesures de réduction de la nuisance provoquée par le processus de fabrication sur l'environnement :

- dans l'air: Les émanations de poussières sont récupérées dans des installations de filtres et ramenées vers le processus de fabrication.
- dans l'eau: l'atelier de production est équipé d'une installation de traitement des eaux usées. Toute l'eau circulant pour la fabrication ou le nettoyage est épurée mécaniquement et remise dans le processus de fabrication.

Déchets

Déchets de production :

Tous les résidus de fabrication, produits sur le site de fabrication, sont recyclée.

Mise en œuvre:

Les emballages sont réduits au minimum. Les palettes utilisées pour le transport des produits sont réutilisables. Les plaques peuvent être livrées prêts à poser, sur demande du client, de sorte qu'il n'y ait pas de déchets à la mise en œuvre.

Déchets en fin de vie :

Le destin le plus probable pour le produit Silbonit est la mise en décharge pour matériaux inertes.

Lorsqu'ils peuvent être séparés, en cas de démontage du bâtiment, les plaques Silbonit peuvent être melangée avec autres produit et utilisé comme matériel pour la construction des routes et barrière antibruit.

6. Annexe : Caractérisation des données pour le calcul de l'Inventaire de Cycle de Vie (ICV)

6.1 Définition du système d'ACV (Analyse de Cycle de Vie)

Etapes et flux inclus

Production

- Production des matières premières
- Transport des matières premières jusqu'au site de fabrication (Verolanuova (Bs))
- Fabrication des produits
- Production et fin de vie des emballages de matières premières
- Production des emballages des produits finis

Transport

Transport du produit

Mise en œuvre

- Fin de vie des emballages des produits finis (recyclés ou réutilisés)
- Pour la mis en œuvre de la plaque on a considéré l'utilisation de vis et rivets métalliques L'énergie nécessaire pour la fixage de la plaque à été négligée

Vie en œuvre

• Aucun flux considéré car le système de nécessite aucune rénovation

Fin de vie

- Transport des déchets
- Traitement des déchets

Flux omis

La norme NF P01-010 permet d'omettre des frontières du système les flux suivants :

- l'éclairage, le chauffage et le nettoyage des ateliers
- le département administratif,
- le transport des employés,
- la fabrication de l'outil de production et des systèmes de transport (machines, camions, etc.....).

Règle de délimitation des frontières

La norme NF P01-010 fixe le seuil de coupure à 98%.

Dans le cadre de cette déclaration, tous les constituants de l'unité fonctionnelle ont été pris en compte dès lors que les informations étaient disponibles.

6.2 Sources de donne

Caractérisation des données principales

Fabrication

- Année: 2011
- Représentativité géographique: Italie
- Représentativité technologique: Usine SIL
- Source: SIL doneness + Ecoinvent v.2.2 + Plastics Europe + World Steel Association

Transport

- Année: 2011
- Source : SIL données + Ecoinvent v2.2

Mise en œuvre

- Année: 2011
- Zone géographique : Europe
- Source : SIL données+ Ecoinvent v2.2

Vie en œuvre

Sans donnés

Fin de vie

Année : 2011

Source: SIL donne + Ecoinvent v2.2

Données énergétiques

Les données utilisées concernant l'énergie, et notamment les inventaires de production d'électricité et les inventaires de production et combustion du diesel sont issues de la base de données Ecoinvent v2.2

6.3 Traçabilité

L'origine des données est détaillée dans le rapport d'accompagnement.