

Statement of Verification

BREG EN EPD No.: 000486

Issue 01

This is to verify that the

Environmental Product Declaration

provided by:

Profine GmbH

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for:

1 m² of KömaDur Internal wall cladding

Company Address

Profine GmbH Pirmasens Zweibrückerstraße 200, 66954 Pirmasens, Germany

BRE/Global

Signed for BRE Global Ltd

Operator

25 April 2023

Date of this Issue

24 April 2028

Date of First Issue

25 April 2023

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000486

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013
Commissioner of LCA study	LCA consultant/Tool
Profine GmbH Pirmasens Zweibrückerstraße 200, 66954 Pirmasens, Germany	Bala Subramanian, BRE LINA 2.0
Declared Unit	Applicability/Coverage
1 m² of KömaDur Internal wall cladding	Product Average.
EPD Type	Background database
Cradle to Gate with options	ecoinvent
Demonstra	ation of Verification
CEN standard EN 15	5804 serves as the core PCR ^a
Independent verification of the declara □Internal	ation and data according to EN ISO 14025:2010
	riate ^b)Third party verifier: ere to enter text.
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

								Use sta	.ge							Benefits and loads beyond
	Produc	ŧ	Const	ruction	Rel	ated to	the bui	ilding fa	bric	Relat			End-	of-life		the system boundary
A 1	A2	А3	A 4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
V	V	$\overline{\mathbf{V}}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$												

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Profine GmbH

Pirmasens Zweibrückerstraße 200, 66954 Pirmasens, Germany

Construction Product

Product Description

KömaDur is a high solid sheet made of rigid PVC. The outcome is rigid PVC-U sheets that are characterised by a homogeneous, smooth, and glossy surface quality. They are resistant to flames, chemicals, and corrosion in compliance with DIN 8061 and to most aggressive media. Its convincing properties and diversity make the KömaDur programme the ideal material for many applications. It has special forming, printing, or outdoor properties, depending on the requirement.

KömaDur is available in various thicknesses ranging from 0.9 mm to 30 mm; this EPD represents 1 m^2 of internal wall cladding with a weight of 1 kg/m^2 of KömaDur panel. This is to enable the impacts on the range of KömaDur panels to be calculated for the available thicknesses.

Technical Information

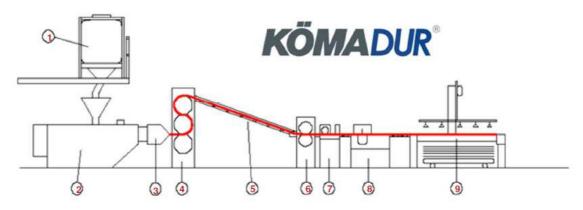
Technical properties are of all products assessed within this average EPD

Mechanical pro	operties	Standard	Unit		Va	alue Köma	Dur:	
				М	D	ES	Н	WA
Apparent de	nsity*	DIN EN ISO 1183	g / cm3	~ 1.43	~ 1.43	~ 1.43	~ 1.43	~ 1.43
Yield stress (strength		DIN EN ISO 527	MPa	≥ 55	≥ 50	≥ 48	≥ 45	≥ 55
Elongation a	at tear	DIN EN ISO 527	%	≥ 15	≥ 15	≥ 20	≥ 20	≥ 15
Flexural stre	ength	DIN EN ISO 178	MPa	≥ 80	≥ 75	≥ 75	≥ 70	≥ 80
Compressive	strength	DIN EN ISO 844	MPa	≥ 70	≥ 65	≥ 65	≥ 60	≥ 70
Modulus of el	asticity	DIN EN ISO 527-2 / 1A / 50	MPa	≥ 3000	≥ 2500	≥ 2500	≥ 2500	≥ 3000
Notched im strength	•	DIN EN ISO 179- 1ePA	KJ / m2	≥ 4	≥ 6	≥ 6	≥ 8	≥ 4
Impact stre	ength	DIN EN ISO 179	KJ / m2					
	0 °C			no failure	no failure	no failure	no failure	no failure
	-20 °C			-	no failure	no failure	no failure	-
	-30 °C			-	-	no failure	no failure	-
	-40 °C				-	-	no failure	-
Ball indenta hardness (358 s)		DIN EN ISO 2039	MPa	~ 100	~ 90	~ 90	~ 90	~ 100
		Th	ermal prop	erties				
Vicat softe temperat	•	DIN EN ISO 306 (process B50)	ŝ	≥ 75	≥ 72	≥ 72	≥ 72	≥ 75
Deflecti temperat		DIN EN ISO 75	°C	~ 68	~ 66	~ 66	~ 66	~ 68
Coefficient of linear thermal expansion from – 30 °C to + 50 °C		DIN EN ISO 11359-2 (process Ae)	mm/ mK	0.08	0.08	0.08	0.08	0.08
Thermal cond from 0 °C to °C	•	DIN EN ISO 22007	W/mK	0.16	0.16	0.16	0.16	0.16

bre

Main Product Contents

Material composition of all products assessed within this average EPD


Material/Chemical Input	%
Polyvinylchloride	80 - 85
Co-Stabilizer	0.5 - 1
Calcium Carbonate	0 - 7
Pigment	0 - 0.5
Lubricant	1 - 2
Sn Stabiliser	0.5 - 1.5
Modifier	1.5 - 10
Processing aid	1.5 - 2.5
Others	0 - 5

Manufacturing Process

A solid PVC sheet is created by a slot die and a calender. With different surfaces of the calender rolls, different surface qualities can be produced. Like glossy, matt or with a structure. For different applications the required product quality can be achieved

Process flow diagram

- 1) Charge
- 2) Twin-screw extruder
- 3) Flat sheet die
- 4) 3 smoothing rolls
- 5) Roller train

- 6) Draw-off roll
- Saw-cutting / skip slitter
- 8) Saw-cutting / guillotine shears
- Stack / pallet type conveyor

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1 m² of KömaDur Interior wall cladding panel

System boundary

This is a cradle-to-gate with options LCA study that follows the modular design defined in EN 15804:2012+A1:2013 and includes the production stage modules, A1 to A3; and construction stages A4 Transport and A5 Installation.

Data sources, quality and allocation

Datasets are derived from Ecoinvent v3.2 (2015) and the LCA tool used was BRE LINA v2.0. The LCA models and reports the modules such as A1 to A3 - production stage, A4 - transportation and A5 - installation. No inputs or outputs have been excluded, all the ancillary materials, energy, and water use are included. Only exemptions are emissions to air, water, and soil are not measured during the data collection period. The quantity used in the data collection for this EPD is for the total quantity of KömaDur manufacturing as a proportion of the total manufactured during the data collection period (01-01-2021 to 31-12-2021), which was calculated at 7.7%.

Profine GmbH manufactures KömaDur in thicknesses from 0.9 mm to 30 mm with densities from 1.527 to 1.397 kg/m^3 , however, the composition of each thickness is same; so, to provide the average EPD, the

impacts are analysed by using total production data of the KömaDur for 1 kg/m² to enable the impacts for the different thicknesses. And the impacts are calculated for the range of thicknesses 0.9mm, 2.5mm, 10mm and 30mm.

Profine GmbH manufactures other products in addition to KömaDur products; therefore, an allocation of fuel consumption, water consumption, and discharge is required, and this has been done according to the provisions of the BRE PCR PN514 and EN 15804. Waste and Electricity consumption was determined by measuring the consumption on the manufacturing site for all production lines and weighted proportionally by production of KömaDur. The original data collection form has been used while doing an LCA analysis, there was a no uplift in the given data.

Secondary data has been obtained for all other upstream and downstream processes that are beyond the control of the manufacturer (i.e., raw material production) from the ecoinvent 3.2 database. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs, according to the requirements specified in EN15804.

Specific European and electricity Germany – electricity datasets have been selected from the ecoinvent LCI for this LCA. The quality levels of geographical and technical representativeness are therefore very good. The quality level of time representativeness is fair as the background LCI datasets are based on ecoinvent v3.2 which was compiled in 2015. Therefore, there is approximately 5-6 years between the ecoinvent LCI reference year and the time period for which the LCA was undertaken.

Cut-off criteria

All the raw materials, ancillary materials, process energy, general energy, water use/discharge and production waste have been included. Only emission to water, land, and soil was not covered.

LCA Results

The results per declared unit (1 kg/m²) of the KömaDur Interior wall cladding panel.

Parameters describing environmental impacts												
			GWP	ODP	AP	EP	POCP	ADPE	ADPF			
		kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.				
	Raw material supply	A1	2.71E+00	1.02E-07	1.19E-02	2.63E-03	3.30E-03	1.76E-05	6.09E+01			
Product stage	Transport	A2	1.63E-01	2.96E-08	8.59E-04	1.69E-04	1.11E-04	3.88E-07	2.45E+00			
Froduct Stage	Manufacturing	A3	2.83E-01	2.62E-08	7.94E-04	1.25E-03	1.47E-04	9.36E-07	6.55E+00			
	Total (of product stage)			1.58E-07	1.35E-02	4.05E-03	3.56E-03	1.90E-05	6.99E+01			
Construction	Transport	A4	1.00E-01	1.85E-08	3.35E-04	8.85E-05	5.85E-05	2.64E-07	1.52E+00			
process stage	Construction	A5	2.82E+01	1.69E-06	1.33E-01	8.30E-02	2.96E-02	3.62E-04	3.83E+02			

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements;

ADPF = Abiotic Depletion Potential - Fossil Fuels;

Parameters	Parameters describing resource use, primary energy											
			PERE	PERM	PERT	PENRE	PENRM	PENRT				
			MJ	MJ	MJ	MJ	MJ	MJ				
	Raw material supply	A1	3.04E+00	4.35E-03	3.04E+00	7.05E+01	0.00E+00	7.05E+01				
Product stage	Transport	A2	3.54E-02	1.15E-07	3.54E-02	2.44E+00	0.00E+00	2.44E+00				
1 Toddet stage	Manufacturing	А3	1.65E+00	9.49E-06	1.65E+00	7.13E+00	4.20E-02	7.17E+00				
	Total (of product stage)	A1-3	4.73E+00	4.36E-03	4.73E+00	8.01E+01	4.20E-02	8.01E+01				
Construction	Transport	A4	2.01E-02	7.49E-08	2.01E-02	1.51E+00	0.00E+00	1.51E+00				
process stage	Construction	A5	3.06E+01	6.07E-03	3.06E+01	3.93E+02	1.87E+01	4.12E+02				

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

Parameters describing resource use, secondary materials and fuels, use of water											
			SM	RSF	NRSF	FW					
			kg	MJ net calorific value	MJ net calorific value	m³					
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	1.94E-01					
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	5.37E-04					
Froduct stage	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	4.15E-03					
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	1.99E-01					
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	3.28E-04					
process stage	Construction	A5	0.00E+00	0.00E+00	0.00E+00	8.41E-01					

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories										
			HWD	NHWD	RWD					
			kg	kg	kg					
	Raw material supply	A1	8.54E-02	2.77E-01	6.20E-05					
Product stage	Transport	A2	1.03E-03	1.03E-01	1.69E-05					
Froduct stage	Manufacturing	A3	2.19E-03	2.31E-02	2.11E-05					
	Total (of product stage)	A1-3	8.87E-02	4.02E-01	1.00E-04					
Construction	Transport	A4	6.35E-04	7.06E-02	1.04E-05					
process stage	Construction	A5	7.33E+00	2.54E+00	8.94E-04					

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other enviro	Other environmental information describing output flows – at end of life											
			CRU	MFR	MER	EE						
			kg	kg	kg	MJ per energy carrier						
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Froduct Stage	Manufacturing	A3	1.30E-01	1.17E-03	2.38E-04	0.00E+00						
	Total (of product stage)	A1-3	1.30E-01	1.17E-03	2.38E-04	0.00E+00						
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
process stage	Construction	A5	6.52E-03	5.87E-05	1.19E-05	0.00E+00						

CRU = Components for reuse; MFR = Materials for recycling

LCA Results – 0.9 mm Thickness panel

The results per declared unit (1.374 kg/m²) of the KömaDur Interior wall cladding panel.

Parameters describing environmental impacts												
			GWP	ODP	AP	EP	POCP	ADPE	ADPF			
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.			
	Raw material supply	A1	3.73E+00	1.41E-07	1.63E-02	3.61E-03	4.54E-03	2.34E-05	8.37E+01			
Product stage	Transport	A2	2.24E-01	4.07E-08	1.18E-03	2.33E-04	1.52E-04	5.34E-07	3.36E+00			
Froduct Stage	Manufacturing	A3	3.89E-01	3.60E-08	1.09E-03	1.72E-03	2.02E-04	1.29E-06	9.00E+00			
	Total (of product stage)	A1-3	4.34E+00	2.17E-07	1.86E-02	5.56E-03	4.89E-03	2.52E-05	9.60E+01			
Construction	Transport	A4	1.38E-01	2.54E-08	4.61E-04	1.22E-04	8.04E-05	3.63E-07	2.08E+00			
process stage	Construction	A5	2.82E+01	1.70E-06	1.34E-01	8.31E-02	2.97E-02	3.63E-04	3.84E+02			

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements;

ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters	describing r	esoui	rce use, pri	mary ener	gy			
			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	4.18E+00	5.98E-03	4.18E+00	9.69E+01	0.00E+00	9.69E+01
Product stage	Transport	A2	4.87E-02	1.58E-07	4.87E-02	3.35E+00	0.00E+00	3.35E+00
1 Toddot Stage	Manufacturing	А3	2.27E+00	1.30E-05	2.27E+00	9.80E+00	5.76E-02	9.86E+00
	Total (of product stage)	A1-3	6.50E+00	5.99E-03	6.50E+00	1.10E+02	5.76E-02	1.10E+02
Construction	Transport	A4	2.76E-02	1.03E-07	2.76E-02	2.07E+00	0.00E+00	2.07E+00
process stage	Construction	A5	3.07E+01	6.15E-03	3.07E+01	3.95E+02	1.87E+01	4.13E+02

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

Parameters describing resource use, secondary materials and fuels, use of water											
			SM	RSF	NRSF	FW					
		kg	MJ net calorific value	MJ net calorific value	m³						
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	2.67E-01					
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	7.39E-04					
Froduct Stage	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	5.70E-03					
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	2.74E-01					
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	4.51E-04					
process stage	Construction	A5	0.00E+00	0.00E+00	0.00E+00	8.45E-01					

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels;

FW = Net use of fresh water

Other environmental information describing waste categories									
			HWD	NHWD	RWD				
			kg	kg	kg				
	Raw material supply	A1	1.17E-01	3.80E-01	8.52E-05				
Product stage	Transport	A2	1.41E-03	1.41E-01	2.32E-05				
1 Toddet stage	Manufacturing	A3	3.01E-03	3.17E-02	2.90E-05				
	Total (of product stage)	A1-3	1.22E-01	5.53E-01	1.37E-04				
Construction	Transport	A4	8.72E-04	9.71E-02	1.44E-05				
process stage	Construction	A5	7.33E+00	2.54E+00	8.96E-04				

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life									
			CRU	MFR	MER	EE			
			kg	kg	kg	MJ per energy carrier			
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Froduct stage	Manufacturing	A3	1.79E-01	1.70E-03	3.26E-04	0.00E+00			
	Total (of product stage)	A1-3	1.79E-01	1.70E-03	3.26E-04	0.00E+00			
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
process stage	Construction	A5	9.62E-03	1.33E-01	1.63E-05	0.00E+00			

CRU = Components for reuse; MFR = Materials for recycling

LCA Results – 2.5 mm Thickness panel

The results per declared unit (3.575 kg/m²) of the KömaDur Interior wall cladding panel.

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.		
	Raw material supply	A1	9.70E+00	3.66E-07	4.25E-02	9.41E-03	1.18E-02	6.42E-05	2.18E+02		
Product stage	Transport	A2	5.83E-01	1.06E-07	3.07E-03	6.05E-04	3.96E-04	1.39E-06	8.75E+00		
Froduct Stage	Manufacturing	A3	9.82E-01	9.44E-08	2.83E-03	4.47E-03	5.16E-04	3.35E-06	2.35E+01		
	Total (of product stage)	A1-3	1.13E+01	5.66E-07	4.84E-02	1.45E-02	1.27E-02	6.89E-05	2.50E+02		
Construction process stage	Transport	A4	3.59E-01	6.60E-08	1.20E-03	3.16E-04	2.09E-04	9.45E-07	5.42E+00		
	Construction	A5	2.86E+01	1.72E-06	1.35E-01	8.36E-02	3.00E-02	3.65E-04	3.92E+02		

GWP = Global Warming Potential;

ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential - Elements;

ADPF = Abiotic Depletion Potential - Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
	Raw material supply	A1	1.09E+01	1.56E-02	1.09E+01	2.52E+02	0.00E+00	2.52E+02		
Product stage	Transport	A2	1.27E-01	4.11E-07	1.27E-01	8.72E+00	0.00E+00	8.72E+00		
1 Toddot stage	Manufacturing	А3	5.91E+00	3.39E-05	5.91E+00	2.56E+01	1.50E-01	2.57E+01		
	Total (of product stage)	A1-3	1.69E+01	1.56E-02	1.69E+01	2.86E+02	1.50E-01	2.87E+02		
Construction process stage	Transport	A4	7.19E-02	2.68E-07	7.19E-02	5.38E+00	0.00E+00	5.38E+00		
	Construction	A5	3.12E+01	6.63E-03	3.13E+01	4.04E+02	1.87E+01	4.22E+02		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m³				
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	6.95E-01				
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	1.92E-03				
1 Toduct Stage	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	1.48E-02				
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	7.12E-01				
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	1.17E-03				
process stage	Construction	A 5	0.00E+00	0.00E+00	0.00E+00	8.67E-01				

SM = Use of secondary material;

RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels;

FW = Net use of fresh water

Other environmental information describing waste categories									
			HWD	NHWD	RWD				
			kg	kg	kg				
Decident states	Raw material supply	A1	3.05E-01	9.89E-01	2.22E-04				
	Transport	A2	3.67E-03	3.67E-01	6.03E-05				
Product stage	Manufacturing	A3	8.70E-03	8.24E-02	7.59E-05				
	Total (of product stage)	A1-3	3.18E-01	1.44E+00	3.58E-04				
Construction	Transport	A4	2.27E-03	2.53E-01	3.74E-05				
process stage	Construction	A5	7.34E+00	2.60E+00	9.08E-04				

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life										
			CRU	MFR	MER	EE				
			kg	kg	kg	MJ per energy carrier				
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Froduct stage	Manufacturing	A3	4.71E-01	1.86E-05	0.00E+00	0.00E+00				
	Total (of product stage)	A1-3	4.71E-01	1.86E-05	0.00E+00	0.00E+00				
Construction process stage	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Construction	A5	6.85E-02	1.99E-01	0.00E+00	0.00E+00				

CRU = Components for reuse; MFR = Materials for recycling

LCA Results – 10 mm Thickness panel

The results per declared unit (14.070 kg/m²) of the KömaDur Interior wall cladding panel.

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
		kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.			
	Raw material supply	A1	3.82E+01	1.44E-06	1.67E-01	3.70E-02	4.65E-02	2.53E-04	8.57E+02		
Product stage	Transport	A2	2.29E+00	4.17E-07	1.21E-02	2.38E-03	1.56E-03	5.47E-06	3.44E+01		
Froduct Stage	Manufacturing	A3	3.86E+00	3.72E-07	1.11E-02	1.76E-02	2.03E-03	1.32E-05	9.24E+01		
	Total (of product stage)	A1-3	4.43E+01	2.23E-06	1.91E-01	5.70E-02	5.01E-02	2.72E-04	9.84E+02		
Construction process stage	Transport	A4	1.41E+00	2.60E-07	4.72E-03	1.25E-03	8.23E-04	3.72E-06	2.13E+01		
	Construction	A5	3.09E+01	1.92E-06	1.44E-01	8.63E-02	3.23E-02	3.77E-04	4.39E+02		

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements;

ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
Product stage	Raw material supply	A1	4.28E+01	6.12E-02	4.28E+01	9.92E+02	0.00E+00	9.92E+02		
	Transport	A2	4.99E-01	1.62E-06	4.99E-01	3.43E+01	0.00E+00	3.43E+01		
r roddot stago	Manufacturing	А3	2.33E+01	1.33E-04	2.33E+01	1.01E+02	5.90E-01	1.01E+02		
	Total (of product stage)	A1-3	6.65E+01	6.14E-02	6.66E+01	1.13E+03	5.90E-01	1.13E+03		
Construction	Transport	A4	2.83E-01	1.05E-06	2.83E-01	2.12E+01	0.00E+00	2.12E+01		
process stage	Construction	A5	3.39E+01	8.92E-03	3.39E+01	4.56E+02	1.87E+01	4.75E+02		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

Parameters of	describing res	ource	use, secondary n	naterials and fuels	s, use of water	
			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m³
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	2.73E+00
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	7.56E-03
Froduct stage	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	5.83E-02
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	2.80E+00
Construction process stage	Transport	A4	0.00E+00	0.00E+00	0.00E+00	4.62E-03
	Construction	A5	0.00E+00	0.00E+00	0.00E+00	9.74E-01

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels;

FW = Net use of fresh water

Other environmental information describing waste categories									
			HWD	NHWD	RWD				
		kg	kg	kg					
	Raw material supply	A1	1.20E+00	3.89E+00	8.73E-04				
Product stage	Transport	A2	1.44E-02	1.44E+00	2.37E-04				
Froduct stage	Manufacturing	A3	3.42E-02	3.24E-01	2.99E-04				
	Total (of product stage)	A1-3	1.25E+00	5.66E+00	1.41E-03				
Construction	Transport	A4	8.93E-03	9.94E-01	1.47E-04				
process stage	Construction	A5	7.39E+00	3.29E+00	1.03E-03				

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life										
			CRU	MFR	MER	EE				
			kg	kg	kg	MJ per energy carrier				
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Froduct stage	Manufacturing	A3	1.85E+00	7.34E-05	0.00E+00	0.00E+00				
	Total (of product stage)	A1-3	1.85E+00	7.34E-05	0.00E+00	0.00E+00				
Construction process stage	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Construction	A 5	1.38E-01	7.23E-01	0.00E+00	0.00E+00				

CRU = Components for reuse; MFR = Materials for recycling

LCA Results – 30mm Thickness panel

The results per declared unit (41.910 kg/m²) of the KömaDur Interior wall cladding panel.

Parameters describing environmental impacts										
			GWP	ODP	AP	EP	POCP	ADPE	ADPF	
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.	
	Raw material supply	A1	1.14E+02	4.29E-06	4.98E-01	1.10E-01	1.38E-01	7.38E-04	2.55E+03	
Product stage	Transport	A2	6.83E+00	1.24E-06	3.60E-02	7.09E-03	4.64E-03	1.63E-05	1.03E+02	
Froduct Stage	Manufacturing	A3	1.19E+01	1.10E-06	3.33E-02	5.24E-02	6.15E-03	3.92E-05	2.75E+02	
	Total (of product stage)	A1-3	1.32E+02	6.63E-06	5.68E-01	1.70E-01	1.49E-01	7.93E-04	2.93E+03	
Construction	Transport	A4	4.20E+00	7.74E-07	1.41E-02	3.71E-03	2.45E-03	1.11E-05	6.35E+01	
process stage	Construction	A5	3.48E+01	2.05E-06	1.62E-01	9.15E-02	3.70E-02	4.02E-04	5.29E+02	

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy									
			PERE	PERM	PERT	PENRE	PENRM	PENRT	
			MJ	MJ	MJ	MJ	MJ	MJ	
	Raw material supply	A1	1.27E+02	1.82E-01	1.28E+02	2.96E+03	0.00E+00	2.96E+03	
Product stage	Transport	A2	1.48E+00	4.82E-06	1.48E+00	1.02E+02	0.00E+00	1.02E+02	
1 Toduct stage	Manufacturing	А3	6.93E+01	3.98E-04	6.93E+01	2.99E+02	1.76E+00	3.01E+02	
	Total (of product stage)	A1-3	1.98E+02	1.83E-01	1.98E+02	3.36E+03	1.76E+00	3.36E+03	
Construction	Transport	A4	8.43E-01	3.14E-06	8.43E-01	6.31E+01	0.00E+00	6.31E+01	
process stage	Construction	A5	4.04E+01	1.50E-02	4.04E+01	5.60E+02	1.87E+01	5.79E+02	

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

Parameters describing resource use, secondary materials and fuels, use of water									
			SM	RSF	NRSF	FW			
			kg	MJ net calorific value	MJ net calorific value	m³			
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	8.14E+00			
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	2.25E-02			
Froduct stage	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	1.73E-01			
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	8.34E+00			
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	1.38E-02			
process stage	Construction	A 5	0.00E+00	0.00E+00	0.00E+00	1.25E+00			

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels;

le secondary fuels;	FW = Net use of fresh water

Other environmental information describing waste categories									
			HWD	NHWD	RWD				
		kg	kg	kg					
	Raw material supply	A1	3.58E+00	1.16E+01	2.60E-03				
Droduct stage	Transport	A2	4.30E-02	4.30E+00	7.06E-04				
Product stage	Manufacturing	A3	9.18E-02	9.67E-01	8.83E-04				
	Total (of product stage)	A1-3	3.72E+00	1.69E+01	4.19E-03				
Construction	Transport	A4	2.66E-02	2.96E+00	4.38E-04				
process stage	Construction	A5	7.51E+00	3.50E+00	1.12E-03				

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life									
			CRU	MFR	MER	EE			
			kg	kg	kg	MJ per energy carrier			
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Product Stage	Manufacturing	A3	5.47E+00	5.02E-02	1.11E-02	0.00E+00			
	Total (of product stage)	A1-3	5.47E+00	5.02E-02	1.11E-02	0.00E+00			
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
process stage	Construction	A5	3.18E-01	2.12E+00	5.56E-04	0.00E+00			

CRU = Components for reuse; MFR = Materials for recycling

Scenarios and additional technical information

Scenarios and additional technical information									
Scenario	Parameter	Units	Results						
	Transported from Germany to mainly plastic distributors and industrial customers, also building industries across Europe								
A4 T	Fuel type / Vehicle type	Litre of fuel type per distance or vehicle type	Lorry, 16 - 32 metric ton						
A4 – Transport to the building site	Distance	km	600						
	Capacity utilisation (incl. empty returns)	%	26						
	Bulk density of transported products	kg/m ³	217						
A5 – Installation in the building	The panels will be adjusted to the final dimensions, then they are installed using screw or adhesive connections								
	Installation waste percentage	5	%						

Interpretation of results

The bulk of the environmental impacts and primary energy demand are attributed to the upstream manufacturing process of the Interior wall cladding panel, covered by information modules A1-A3 of EN15804:2012+A1:2013.

Individual product calculations

The LCA results listed in the tables above are for KömaDur panels, which are for the processing of 1 kg/m². The end-user of this EPD can therefore use these results to calculate impact profiles for each KömaDur panels with different thicknesses by using the weight per m². In the below calculation table, the GWP impacts have been calculated for the standard product thicknesses for 1 kg/m² as an example to enable calculations for other thicknesses.

	KömaDur	Thickness	1	3	4	6
	Kg/m2	1	1.45	4.22	5.59	8.48
	A 1	2.71E+00	3.92E+00	1.14E+01	1.51E+01	2.30E+01
	A2	1.63E-01	2.36E-01	6.88E-01	9.11E-01	1.38E+00
4	А3	2.83E-01	4.10E-01	1.19E+00	1.58E+00	2.40E+00
Ī	A1-A3	3.16E+00	4.57E+00	1.33E+01	1.76E+01	2.68E+01

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

